Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 1): 116111, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178746

RESUMO

The physicochemical attributes of textile effluents collected from secondary treatment stage was investigated in this study and also assess the biosorption potential of membrane immobilized Bacillus cereus and free form of Bacillus cereus on textile effluent through bioreactor model study to find a sustainable solution to manage the textile effluent as vital need. Furthermore, the phytotoxicity and cytotoxicity nature of treated and untreated textile effluents on Vigna mungo and Artemia franciscana larvae under laboratory conditions as a novel approach. The textile effluent physicochemical parameter analysis results showed that the properties such as colour (Hazen unit), pH, turbidity, As, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Cd, Cl, Cr, Cu, Hg, Ni, Pb, SO42-, and Zn were beyond the acceptable limits. Bacillus cereus immobilized on a polyethylene membrane eliminated greater amounts of dye (25.0 ± 1.3, 56.5 ± 1.8, 57.18 ± 1.5, and 54.34 ± 1.7 Hazen unit from An1, Ae2, Ve3, and So4 respectively) and pollutants (As: 0.9-2.0, Cd: 6-8, Cr: 300-450, Cu: 5-7, Hg: 0.1-0.7, Ni: 8-14, Pb: 4-5, and Zn: 4-8 mg L-1) from textile effluent in a week of biosorption investigation using a bioreactor model (batch type) compared to a free form of B. cereus on textile effluent. The phytotoxicity and cytotoxicity study results revealed that the membrane immobilized B. cereus treated textile effluent exposure showed reduced phytotoxicity and minimal cytotoxicity (including mortality) percentage compared with free form B. cereus treated and untreated textile effluents. These entire results conclude that the membrane immobilized B. cereus may considerably minimize/detoxify the harmful pollutants from the textile effluents. A large scale level biosorption approach need to be performed to validate the maximum pollutants removing potential of this membrane immobilized bacteria species and optimal conditions for effective remediation.


Assuntos
Poluentes Ambientais , Mercúrio , Vigna , Poluentes Químicos da Água , Animais , Bacillus cereus , Artemia , Cádmio/análise , Chumbo/análise , Sementes/química , Poluentes Ambientais/análise , Mercúrio/análise , Têxteis , Indústria Têxtil , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Corantes/toxicidade , Corantes/química
2.
Environ Res ; 231(Pt 3): 116216, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224944

RESUMO

The present investigation explores the feasibility of generating biogas from water hyacinth (WH) through a pretreatment process. The WH samples were subjected to a high concentration of H2SO4 pretreatment to enhance biogas production. The H2SO4 pretreatment aids in breaking down the lignocellulosic materials found in the WH. Additionally, it helps modify the cellulose, hemicellulose, and lignin, which assists in the anaerobic digestion process. The samples underwent pretreatment with 5% v/v H2SO4 for 60 min. Biogas production was conducted for both untreated and pretreated samples. Furthermore, sewage sludge and cow dung were used as inoculants to promote fermentation in the absence of oxygen. The results of this study demonstrate that the pretreatment of water hyacinth with 5% v/v H2SO4 for 60 min considerably enhances biogas production through the anaerobic co-digestion process. The maximum biogas production was recorded by T. Control-1, with a production rate of 155 mL on the 15th day compared to all other controls. All the pretreated samples showed the highest biogas production on the 15th day, which is comparatively five days earlier than the untreated samples. In terms of CH4 production, the maximum yield was observed between the 25th and 27th days. These findings suggest that water hyacinth is a viable source of biogas production, and the pretreatment method significantly improves biogas yield. This study presents a practical and innovative approach to biogas production from water hyacinth and highlights the potential for further research in this area.


Assuntos
Biocombustíveis , Eichhornia , Anaerobiose , Metano , Esgotos , Nutrientes , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...